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Abstract

Mathematical models of disease progression predict disease outcomes and are useful
epidemiological tools for planners and evaluators of health interventions. The R package
gems is a tool that simulates disease progression in patients and predicts the effect of
different interventions on patient outcome. Disease progression is represented by a series
of events (e.g., diagnosis, treatment and death), displayed in a directed acyclic graph. The
vertices correspond to disease states and the directed edges represent events. The package
gems allows simulations based on a generalized multistate model that can be described by
a directed acyclic graph with continuous transition-specific hazard functions. The user can
specify an arbitrary hazard function and its parameters. The model includes parameter
uncertainty, does not need to be a Markov model, and may take the history of previous
events into account. Applications are not limited to the medical field and extend to other
areas where multistate simulation is of interest. We provide a technical explanation of the
multistate models used by gems, explain the functions of gems and their arguments, and
show a sample application. This manuscript was published in the Journal of Statistical
Software Blaser et al. (2015).

Keywords: Monte Carlo simulation, multistate model, R, survival analysis, prediction, com-
partmental model.

1. Introduction
We present a simulation algorithm and the R package gems (Salazar Vizcaya et al. 2013) for
simulating from a multistate model with arbitrary transition-specific hazard functions.
In epidemiology, mathematical models of disease progression are useful for predicting disease
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outcomes and for planning and evaluating interventions (Garnett et al. 2011). Disease pro-
gression is often characterized by a series of events, such as diagnosis, treatment and death.
From this characterization, disease progression can be displayed in a directed acyclic graph
(DAG) (Pearl 2009), where disease states are denoted by vertices and the directed edges
connecting them correspond to the events.
Traditional compartmental models of infectious diseases assume that transition times between
the different stages of a disease are exponentially distributed (Anderson and May 1992). The
use of exponential transition times has the advantage that models can be formulated deter-
ministically with ordinary differential equations. Exponential times can also be simulated
using the Gillespie algorithm (Gillespie 1977). However, the distribution of transition times
between states is often not exponential (Lloyd 2001). Although it is possible to divide states
into substates, so that an exponential transition-specific hazard fits the data for those sub-
states, this approach is inflexible. Typical model structures using non-exponential transition
times are agent-based stochastic simulation models (Estill et al. 2012; Phillips et al. 2011).
For instance one study used history-dependent Weibull distributed transition times to inves-
tigate the effect on HIV transmission of bringing patients lost to follow-up back into care
(Estill et al. 2014). This study found that 116 tracing efforts were needed to prevent one
new infection. Agent-based models usually apply to one specific disease and include a limited
number of interventions. We are not aware of any agent-based model structure that can be
applied simultaneously to different diseases and interventions. We therefore propose a more
flexible simulation algorithm that can simulate from any DAG.
We developed a multistate model that allows disease progression to be monitored in a cohort of
individual patients, and takes into account the history of previous events. The R package gems
allows simulation from a directed acyclic multistate model with general transition-specific
hazard functions. The package simplifies definition of the multistate model, its relevant
transition-specific functions, its parameters, and their uncertainty. It also calculates transition
probabilities and cumulative incidences, and thus facilitates analysis of the simulated cohorts.
The R package gems is used for simulation and not parameterization of multistate models.
To parameterize the transition-specific hazard functions, the R packages survival (Therneau
2014), mstate (de Wreede et al. 2011) and muhaz (Hess and Gentleman 2010) can be used.
In Section 2 we present a mathematical description of the multistate model. We present
the simulation from this model and demonstrate the inclusion of parameter uncertainty. In
Section 3, we describe the use of gems in detail, providing explanations for and examples
of all the important package functions. In Section 4 we present a case study in cardiology.
Finally, in Section 5, we discuss the strengths and limitations of the package.

2. Technical description of the simulation model
We describe a directed acyclic multistate model and the algorithm used in gems to simulate
from it. For a general introduction to multistate models, see Putter et al. (2007).

2.1. General setup of the multistate model

A multistate model consists of a set of states and the transitions between them. The states
can be divided into three groups: initial states, intermediate states and absorbing states.
gems only considers multistate models without loops, that is models, which can be written
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as a directed acyclic graph (DAG) (Pearl 2009). A DAG consists of states and the directed
edges that connect them, so that no sequence of directed edges can connect back to a previous
state.
Consider a directed acyclic multistate model with n states E1, . . . , En, where a transition
from state Ei to state Ej is only possible if i < j. Let (Xt)t≥0 be the stochastic process that
describes the progression through the different states. It is an E = {E1, . . . , En}-valued jump
process with jump times given by

Si = inf {t ≥ 0 | Xt = Ei} (1)

for states Ei that are visited, and Si = ∞ otherwise. Transition times to state Ej from the
previous state are defined by Tj = Sj − Smax {k | k<j,Sk<∞}, where S0 = 0 by convention.
The entire process is determined by transition times Tj to state Ej , described by transition-
specific hazard functions hij as

Tij ∼ Fij(t) = 1 − exp
{

−
∫ t

0
hij(u) du

}
, (2)

Tj = min
i∈{1,...j−1 | Ti<∞}

Tij , (3)

where Fij is the cumulative distribution function of the transition time from state Ei to state
Ej . See Figure 1 for a graphical representation of these hazard functions and transition times.
Unless all hazards are constant, X does not have a Markovian structure.

Hazards and transition probabilities

Consider the relatively simple multistate model described in the DAG in Figure 1.

A B

E1

E2

E3

E4

h12 h24

h14

h13 h34

E1

E2

E3

E4

T12

T14

T3 = T13 T4 = T34

T1 = 0

T3 = ∞

Figure 1: Sample DAG of states and transitions. Panel A shows the states and transition
hazards. Panel B shows the potential transition times Tij and the transition times Tj of
a simulation where T13 < T12. The red solid lines depict the path taken in this particular
simulation and the gray circles represent the states visited by the individual. The blue dashed
lines represent the potential transitions that never occurred.

This exemplary model consists of an initial state E1, two intermediate states E2, E3 and one
absorbing state E4. The transition probabilities from state Ei at time s to state Ej at time t

pij(s, t) = P [Xt = Ej | Xs = Ei] , for s ≤ t (4)

can then be calculated from the transition-specific hazard functions as follows.
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The probabilities from state E4 are p44(s, t) = 1 and p4j(s, t) = 0 for all j ̸= 4.
From states E2, E3, the only two possibilities are to remain in the current state or move to
state E4, so the transition probabilities are

pii(s, t) = exp
{

−
∫ t−Si

s−Si

hi4(u) du

}
, for i ∈ {2, 3}, (5)

pi4(s, t) = 1 − exp
{

−
∫ t−Si

s−Si

hi4(u) du

}
, for i ∈ {2, 3}, (6)

pij(s, t) = 0, for i ∈ {2, 3}, j ̸∈ {i, 4}. (7)

The transition probabilities from the initial state are already difficult to solve analytically.
Assuming S1 = 0, the transition probabilities can be calculated from the integrals

p11(s, t) = exp
{

−
∫ t

s
h12(u) du −

∫ t

s
h13(u) du −

∫ t

s
h14(u) du

}
, (8)

p12(s, t) =
∫ t

s
p11(s, u)h12(u)p22(u, t) du, (9)

p13(s, t) =
∫ t

s
p11(s, u)h13(u)p33(u, t) du, (10)

p14(s, t) = 1 − p11(s, t) − p12(s, t) − p13(s, t). (11)

Intuitively, these formulas express that the process X remains in state E1 from time s to time
u. Then it moves to state E2 or E3 respectively, where it remains until time t. The transition
probabilities p12 and p13 can then be calculated as the integral over u. These integrals become
increasingly difficult to solve when there are more states, and they cannot usually be solved
analytically. The gems package uses Monte Carlo methods to simulate the transition times
associated to those probabilities.

2.2. Simulating from hazard functions

In this Section we describe the methods used in the package gems to simulate from a
transition-specific hazard function for one agent. For each state Ei, all transition-specific
hazard functions and their parameters must be specified. For instance, an exponentially dis-
tributed transition with mean µ = 2 can be specified as a constant function h(t) = 1

µ with
parameter µ = 2, or equivalently if specifying h(t) = r with parameter r = 1

2 . For the de-
scription in this Section, the choice of parameterization is arbitrary, but it will be relevant in
Section 2.3 where we consider parameter uncertainty.
It is possible to simulate the times Tik from the hazard functions, as explained below. By
taking the minimum over all k, we get the transition time Tj , and the corresponding state
Ej . To simulate X, we therefore start by simulating from the initial state T1k and calculate
the first transition time by taking the minimum. Then we continue the simulation from the
corresponding state Ej . This procedure is iterated until an absorbing state is reached, at
which point the simulation ends.
In order to simulate from a hazard function, we approximate the specified hazard function h(t)
by a piecewise constant function hpc(t). Then we use the rpexp function of the msm package
(Jackson 2011) to simulate from the piecewise constant approximation of the hazard function
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hpc(t). The rpexp function generates random variables from an exponential distribution with
piecewise constant rates.
To calculate the transition probabilities from the initial state at time t = 0, the process X
is simulated for N agents (i.e., patients in the context of a cohort). At each time point the
proportion of simulated patients that are in any state at that time is calculated. For large
enough N these proportions approximate the transition probabilities from the initial state at
time t = 0.

2.3. Including uncertainty into the multistate model

The exact parameters of transition-specific hazard functions are often not known. This un-
certainty should thus be included in the model’s parameter values. Parameters estimated
from data are often asymptotically normally distributed for a suitable parameterization. We
therefore included parameter uncertainty in the model by sampling the parameters of the
transition-specific hazard functions from a multivariate normal distribution. Therefore the
transition-specific hazard functions need to be parameterized so that parameters are multi-
variate normally distributed.
For each simulated patient, all parameters are first drawn from the specified distribution.
Then the simulation for this patient is performed, as described in Section 2.2. This procedure
allows the direct inclusion of uncertainty in the estimated parameters into the model, and
obtains confidence intervals in the statistical analyses of the hypothetical cohorts. These
confidence intervals reflect both sampling and parameter uncertainty.
In order to include uncertainties in the transition probabilities, the N simulations are split
into M groups. Then the above-mentioned proportions for each of these groups is calculated.
Finally, the 2.5% and 97.5% quantiles are computed to get a 95% confidence interval for the
transition probabilities at each time point. This procedure requires N to be fairly large.

3. Using gems
In this section we illustrate how to use gems (Salazar Vizcaya et al. 2013). Figure 2 shows
a flowchart of the steps to take to use gems and indicates where these steps are described
in detail. First, Section 3.1 shows how to specify all the necessary input (number of states,
hazard functions and parameters) to run a simulation. Then Section 3.2 shows how to simulate
from this input. Section 3.3 describes how to include parameter covariances in the model and
Section 3.4 shows how to add baseline covariates. Finally Section 3.5 describes how to include
history dependence in the hazard functions and Section 3.6 describes an alternative to using
hazard functions for specifying the transitions.
The package is available at CRAN and can be loaded by

R> require("gems")

The package gems uses three classes to encode all model inputs and outputs.

1. A transition.structure contains the number of model states and a matrix with
elements that are used to specify transition-specific hazard functions, their parameters
and covariances.
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Load gems
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number
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hazard
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parameter
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certainty?
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covariance
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Figure 2: Flow chart indicating the steps users should take to simulate cohorts. The colors
indicate where more detailed information is available. The parallelograms represent that user
input is required, the rectangles represent that a process of gems performs this step and the
diamonds represent user decisions.
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2. An ArtCohort contains all aspects of the simulated cohort, including the model input
and a data.frame with the entry times for each patient into each of the states.

3. The PosteriorProbabilities contain the transition probabilities or cumulative inci-
dence that can be calculated from the ArtCohort.

The model has six main functions. The first three are used to specify the model, the fourth
is used for simulation and the last two are used to summarize the results.

1. generateHazardMatrix creates a template of class transition.structure that can
be used to specify the transition-specific hazard functions.

2. generateParameterMatrix creates a template of class transition.structure that
can be used to specify the parameters.

3. generateParameterCovarianceMatrix creates a transition.structure that can be
used to specify the parameter covariance.

4. simulateCohort simulates the specified artificial cohort and returns an object of class
ArtCohort.

5. transitionProbabilities returns an object of class posteriorProbabilities that
contains the transition probabilities from the initial state over time.

6. cumulativeIncidence returns an object of class posteriorProbabilities that con-
tains the cumulative incidence over time.

3.1. Specifying the model

Suppose we want to simulate a disease with initial state E1, intermediate state E2 and ab-
sorbing state E3 as depicted in the DAG in Figure 3. In order to fully specify the model,

E1

E2

E3

h12(t) h23(t)

h13(t)

Figure 3: Model specification DAG.

the hazard functions, their parameters and the covariance structure of these parameters must
be specified. The hazard functions are specified in a transition.structure of dimension
states × states.
The function generateHazardMatrix can be used to specify such a transition.structure
that contains only the model structure.
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R> hf <- generateHazardMatrix(3)
R> print(hf)

to
from State 1 State 2 State 3

State 1 NULL "impossible" "impossible"
State 2 NULL NULL "impossible"
State 3 NULL NULL NULL

The argument statesNumber specifies the number of states in the multistate model. The
resulting transition.structure only provides the basic structure for how hazard functions
are specified and the desired hazard functions must be entered.
For exponential, Weibull and Weibull mixture distributions, the built-in functions can be spec-
ified as "Exponential", "Weibull", and "multWeibull" respectively. Arbitrary continuous
hazards can also be specified as functions.
For instance, assume that the transition times T12 and T13 are exponentially distributed and
the transition time T23 is Weibull distributed. Then the transition.structure can be set
up using double square brackets as follows. To show different ways of specifying time-to-
event distributions, we used a user-supplied function for T12 and a built-in function for T13,
even though they are both exponentially distributed. For the first transition, the hazard
function of an exponential is specified as a hazard function with its own parameterization.
The parameterization of the built-in functions is explained below. Note that user-supplied
functions need to return a result of the same length as the time argument t. The required
code to specify the hazard functions described above is

R> hf[[1, 2]] <- function(t, mu) rep(1 / mu, length(t))
R> hf[[1, 3]] <- "Exponential"
R> hf[[2, 3]] <- "Weibull"
R> print(hf)

to
from State 1 State 2 State 3

State 1 NULL "function(t, mu)" "Exponential"
State 2 NULL NULL "Weibull"
State 3 NULL NULL NULL

When specifying a function as "Exponential" or "Weibull", the parameterization is the
same as in the rexp or rweibull function; that is,

hexp(t, rate) = rate, (12)

hW eibull(t, shape, scale) = shape

scale

(
t

scale

)shape−1
. (13)

For the Weibull mixture model, the parameterization is

hmultW eibull(t, ω, k, λ) = ω1fW (t, k1, λ1) + · · · + ωnfW (t, kn, λn)
ω1(1 − FW (t, k1, λ1)) + · · · + ωn(1 − FW (t, kn, λn)) , (14)
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where fW and FW are the Weibull density and distribution functions in the same parameteri-
zation as before, where ki is the shape and λi the scale of the i-th Weibull distribution. Here k
and λ are n-dimensional vectors and ω is an (n−1) dimensional vector with ωn = 1−

∑n−1
i=1 ωi

being defined automatically. Mixed Weibull distributions can be used when there are multiple
modes of failure that result in the same state and can be estimated using maximum likelihood
or non-linear least squares methods (Ling et al. 2009).
Specifying built-in functions is more efficient than specifying the hazard function of a Weibull
distribution, because the simulation internally uses rweibull instead of using piecewise ap-
proximation of the Weibull hazard function and rpexp to generate Weibull distributed random
numbers.
Once all hazard functions are suitably specified, the parameter values must be determined.
The easiest way to do this is by using the function generateParameterMatrix, with the
hazard structure hf as an argument,

R> par <- generateParameterMatrix(hf)
R> par[[1, 2]] <- list(mu = 3.1)
R> par[[1, 3]] <- list(rate = 0.3)
R> par[[2, 3]] <- list(shape = 3, scale = 3)

The transition.structure generated by generateParameterMatrix is again only a frame-
work; the specific parameter values need to be assigned afterwards. Note that the parameters
need to be specified in the order in which they appear in the function.

3.2. Simulation and post-processing

Once the model is specified, the simulation can be invoked with the simulateCohort func-
tion. The arguments for simulateCohort are the previously specified transitionFunction,
parameters, as well as the number of patients cohortSize to be simulated and the final time
to of the simulation.

R> cohortSize <- 10000
R> cohort <- simulateCohort(transitionFunctions = hf,
+ parameters = par,
+ cohortSize = cohortSize,
+ to = 10)
R> head(cohort)

State 1 State 2 State 3
Patient 1 0 NA 2.8115242
Patient 2 0 4.3985589 8.7294035
Patient 3 0 NA 2.5803986
Patient 4 0 NA 0.2123987
Patient 5 0 0.5824707 4.5493082
Patient 6 0 NA 2.6388907

The output ArtCohort contains the entry time into the different states for each patient.
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Next, we can calculate and plot the transition probabilities and cumulative incidence including
95% confidence intervals from the initial state using the functions transitionProbabilities
and cumulativeIncidence respectively.

R> post <- transitionProbabilities(cohort, times = seq(0,5, .1))
R> cinc <- cumulativeIncidence(cohort, times = seq(0,5, .1))
R> head(post)

State 1 State 2 State 3
Time 0 1.0000 0.0000 0.0000
Time 0.1 0.9384 0.0344 0.0272
Time 0.2 0.8808 0.0658 0.0534
Time 0.3 0.8272 0.0933 0.0795
Time 0.4 0.7775 0.1187 0.1038
Time 0.5 0.7272 0.1464 0.1264

R> head(cinc)

State 1 State 2 State 3
Time 0 1 0.0000 0.0000
Time 0.1 1 0.0344 0.0272
Time 0.2 1 0.0658 0.0534
Time 0.3 1 0.0933 0.0795
Time 0.4 1 0.1188 0.1038
Time 0.5 1 0.1465 0.1264

R> plot(post, main = "Transition probabilities", ci = TRUE)

R> plot(cinc, main = "Cumulative incidence", ci = TRUE)

For the transitionProbabilities function, the argument times specifies the timepoints at
which the transition probabilities should be returned. The plot function admits the argument
ci in order to add confidence intervals to the figure. Figure 4 shows the transition probabilities
and Figure 5 shows the cumulative incidence in the above example.

3.3. Parameter uncertainty

Suppose that we want to include parameter uncertainty in the above example. For instance,
we estimate the shape and scale parameters for the transition from E2 to E3 be distributed
as follows: (

shape
scale

)
∼ MN

((
3
3

)
,

(
0.5 0
0 0.5

))
. (15)

Then the covariance matrix can be specified using the generateParameterCovarianceMatrix
function with the previously generated parameter transition.structure as an argument.
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R> cov <- generateParameterCovarianceMatrix(par)
R> cov[[2, 3]] <- diag(.5, 2)

As with the parameter transition.structure, also the values of the parameter covariance
transition.structure need to be specified after generating the transition.structure.
For the simulation, the uncertainty is included in the parameterCovariance argument for
simulateCohort as follow:

R> cohort <- simulateCohort(transitionFunctions = hf,
+ parameters = par,
+ parameterCovariances = cov,
+ cohortSize = cohortSize,
+ to = 10)

3.4. Baseline characteristics

Baseline characteristics can be included in the model by letting the hazard depend on the
argument baseline; for example, if age and sex are important characteristics. Consider sex
to be encoded as 0 for males and as 1 for females, and let the baseline age be the age in years.
Suppose we want to simulate a cohort of 50% men and 50% women with ages distributed
uniformly between 20 and 50. Baseline characteristics should be specified in a matrix or
data.frame as follows.

R> bl <- data.frame(sex = rbinom(cohortSize, 1, .5),
+ age = runif(cohortSize, 20, 50))
R> head(bl)

sex age
1 0 21.02408
2 1 44.70358
3 0 20.70234
4 1 36.94189
5 0 48.42227
6 1 29.78793

If there is a sex-specific rate, one option would be to record it as a numeric of length 2, with
the first position describing the rate for male and the second position the rate for women.
Suppose age is another risk factor, specified as a rate ratio per year. In this case the function
would depend on the sex-specific rate rate, the rate ratio rr per year of age and the baseline
characteristics bl. The model could then be specified as follows.

R> hf[[1, 2]] <- function(t, bl, rate, rr) {
+ rep(rate[bl["sex"] + 1], length(t)) * rr ^ (bl["age"] - 20)
+ }
R> par[[1, 2]] <- list(rate = c(0.2,0.3), rr = 1.02)
R> cov[[1, 2]] <- diag(0, 3)
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In order to simulate from this model that includes baseline characteristics, an additional
argument baseline is added to the simulateCohort function as follows.

R> cohort <- simulateCohort(transitionFunctions = hf,
+ parameters = par,
+ cohortSize = cohortSize,
+ parameterCovariances = cov,
+ baseline = bl,
+ to = 5)

3.5. History dependence

In many real-world applications, transitions between states may depend both on the current
state, and on the history of previous events in the patient history. For instance, in an HIV
treatment model, the immune system worsens between failure of first-line therapy and start of
second-line treatment and the mortality hazard after starting a second-line therapy depends
on how long a person spent on failing first-line treatment (Gazzola et al. 2009).
History-dependence of the model can be specified by letting the hazard function depend on
the argument history. This history-argument is a vector indexed by the transition-number

R> gems:::auxcounter(3)

to
from State 1 State 2 State 3

State 1 0 1 2
State 2 0 0 3
State 3 0 0 0

and is the transition time Ti for the transitions that have occurred. For transitions that have
not yet occurred, the history argument is 0.
The history argument allows to use the clock-forward approach (time refers to the time since
the patient entered the initial state) instead of the clock-reset approach (time refers to time
since entry into current state) to multistate modeling (Putter et al. 2007). To use the clock-
forward approach, t can be replaced by t + sum(history). Note that the clock-forward ap-
proach does not support built-in function ("Exponential", "Weibull" and "multWeibull")
and users have to supply their own functions. If the transition-specific hazard for transition
3 was estimated using the clock-forward approach instead of the clock-reset approach, the
Weibull function could be specified as follows.

R> hf[[2, 3]] <- function(t, shape, scale, history) {
+ shape/scale * ((t + sum(history)) / scale) ^ (shape - 1)
+ }

The simulateCohort function can be used with this new function just as it was before.

3.6. Time to transition functions
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Sometimes it is easier not to specify transitions via their hazards, but to directly specify the
time it takes until the transition occurs. For instance, in some cases test results need to
be confirmed by a second test three months later (e.g., HIV treatment failure tests (Estill
et al. 2012)). Then the time would be three months and the hazard function would be a
function with infinite point mass in 3. An additional argument timeToTransition to the
simulateCohort function would have to be given by a matrix; the position of this kind
of transition would be TRUE and the rest (usual hazard functions) would be FALSE. This
procedure and the specification of the transitionFunction is as follows:

R> hf[[1, 3]] <- function() 3
R> par[[1, 3]] <- list()
R> ttt <- matrix(FALSE, nrow = 3, ncol = 3)
R> ttt[1, 3] <- TRUE
R> cohort <- simulateCohort(transitionFunctions = hf,
+ parameters = par,
+ cohortSize = cohortSize,
+ parameterCovariances = cov,
+ timeToTransition = ttt,
+ baseline = bl,
+ to = 5)

4. Case study: Transcatheter aortic valve implantation

4.1. Introduction

Calcific aortic stenosis is a degenerative disease characterized by progressive narrowing of the
aortic valve, which compromises oxygenated blood output from the heart. Medical therapy as
a sole treatment option has not improved survival among patients with symptomatic severe
aortic stenosis. Surgical aortic valve replacement (SAVR) is the treatment of choice and the
gold standard for aortic valve disease treatment. In the presence of serious co-morbidities, and
in patients considered to be at high-risk for SAVR, transcatheter aortic valve implantation
(TAVI) techniques offer less-invasive treatment of valvular aortic stenosis. Older patients
who have severe calcific aortic stenosis, characterized by the presence of co-morbidities and
compromised left ventricular ejection fraction, have increased risk of complications from the
surgical procedure itself. These high risk patients were managed medically until catheter-
based treatment TAVI was introduced in 2002. During a TAVI implantation a bio-prosthetic
valve is inserted and implanted within the diseased aortic valve through a catheter. The
result of increased interest in this catheter-based approach is that this less invasive procedure
is now used in patients with less severe disease (Pilgrim et al. 2012).

4.2. Statistical analysis

The tavi data set contains data on kidney injuries, bleeding complications and the combined
endpoint of stroke or death for 194 patients. The variables kidney, bleeding, death are in-
dicator variables that show if an event has occurred; the variables kidney.dur, bleeding.dur,
death.dur are the times at which the events occurred or the patients were censored.
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R> data("tavi")
R> head(tavi)

id kidney kidney.dur bleeding bleeding.dur death death.dur
1 P1 0 779 0 779 0 779
2 P2 0 8 1 8 0 379
3 P3 0 342 0 342 0 342
4 P4 1 3 0 3 0 36
5 P5 1 7 0 7 1 131
6 P6 0 9 1 9 0 154

In the following discussion, the DAG depicted in Figure 6 is assumed. Since no patients
experience both kidney injury and bleeding complications, we assume these events to be
mutually exclusive.

TAVI

Kidney

Bleeding

Dead

Figure 6: DAG for case study on TAVI.

We then create the transition matrix using the mstate package. According to the DAG the
transition matrix is given by

R> tmat <- transMat(x = list(c(2, 3, 4), c(4), c(4), c()),
+ names = c("TAVI",
+ "Kidney Injury",
+ "Bleeding",
+ "Stroke/Death"))
R> tmat

to
from TAVI Kidney Injury Bleeding Stroke/Death

TAVI NA 1 2 3
Kidney Injury NA NA NA 4
Bleeding NA NA NA 5
Stroke/Death NA NA NA NA
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In order to estimate the transition-specific hazard functions, we prepare the data using the
mstate package. We use msprep to get the data into long format, and split to split the data
according to the transition.

R> mstavi <- msprep(data = tavi, trans = tmat,
+ time = c(NA, "kidney.dur", "bleeding.dur", "death.dur"),
+ status = c(NA, "kidney", "bleeding", "death"))
R> head(mstavi)

An object of class 'msdata'

Data:
id from to trans Tstart Tstop time status

1 1 1 2 1 0 779 779 0
2 1 1 3 2 0 779 779 0
3 1 1 4 3 0 779 779 0
4 2 1 2 1 0 8 8 0
5 2 1 3 2 0 8 8 1
6 2 1 4 3 0 8 8 0

R> mstavi$time[mstavi$time == 0] <- .Machine$double.eps
R> msplit <- split(mstavi, mstavi$trans)
R> head(msplit[[5]])

An object of class 'msdata'

Data:
id from to trans Tstart Tstop time status

7 2 3 4 5 8 379 371 0
22 6 3 4 5 9 154 145 0
44 13 3 4 5 7 8 1 1
84 25 3 4 5 10 154 144 0
99 29 3 4 5 6 847 841 1
103 30 3 4 5 3 8 5 1

As a first step we fit an exponential distribution to all transition times. For each transition,
we estimate the rate and the variance.

R> exp.fit <- sapply(msplit, function(x)
+ summary(survreg(Surv(time, status) ~ 1,
+ data = x,
+ dist = "exponential")))
R> exp.coef <- unlist(exp.fit["coefficients", ])
R> exp.var <- unlist(exp.fit["var", ])

Next we specify the model, simulate from it and compare the simulated mortality to a Kaplan-
Meier graph of mortality.
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R> states <- 4
R> maxtime <- max(mstavi$time)
R> ind <- which(!is.na(tmat), arr.ind = TRUE)
R> hm <- generateHazardMatrix(states)
R> for (i in 1:dim(ind)[1]){
+ hm[[ind[i, 1], ind[i, 2]]] <- "Weibull"
+ }
R> par <- generateParameterMatrix(hm)
R> for (i in 1:dim(ind)[1]){
+ par[[ind[i, 1], ind[i, 2]]] <- list(shape = 1,
+ scale = exp(exp.coef[i]))
+ }
R> cov <- generateParameterCovarianceMatrix(par)
R> for (i in 1:dim(ind)[1]){
+ cov[[ind[i, 1], ind[i, 2]]] <- matrix(c(0, 0, 0, exp.var[i]), nrow=2)
+ }
R> ds <- simulateCohort(transitionFunctions = hm,
+ parameters = par,
+ cohortSize = 100 * nrow(tavi),
+ parameterCovariances = cov,
+ to = maxtime)
R> cinc <- cumulativeIncidence(ds, 0:maxtime, colnames(tmat), M = 100)

Figure 7 shows the overall mortality from the simulated cohort. Because the purpose of this
study is to illustrate the use and flexibility of the package, we split time into monthly intervals
and calculate piecewise constant hazard functions using the pehaz function from the muhaz
package.

R> timeStep <- 30
R> pwexp <- sapply(msplit, function(x) pehaz(x$time,
+ x$status,
+ width = timeStep,
+ min.time = 0,
+ max.time = max(mstavi$time)))
R> cuts <- pwexp["Cuts", ]
R> pwhazard <- pwexp["Hazard", ]

We parameterize the hazard functions with piecewise constant hazards and simulate again.

R> hm2 <- generateHazardMatrix(states)
R> for (i in 1:dim(ind)[1]){
+ hm2[[ind[i, 1], ind[i, 2]]] <- function(t, rates) {
+ rates[t / timeStep + 1]
+ }
+ }
R> par2 <- generateParameterMatrix(hm2)
R> for (i in 1:dim(ind)[1]){
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+ par2[[ind[i, 1], ind[i, 2]]] <- list(rates = pwhazard[[i]])
+ }
R> ds2 <- simulateCohort(transitionFunctions = hm2,
+ parameters = par2,
+ cohortSize = 100 * nrow(tavi),
+ to = maxtime)
R> cinc2 <- cumulativeIncidence(ds2, 0:maxtime, colnames(tmat), M = 100)

The plot function also admits an argument states, which can be used in order to only plot
certain states as shown in the following example.

R> plot(cinc, states = 4, axes = FALSE, frame = TRUE, col = 2,
+ xlab = "Time (in months)", main = "Mortality", ci = TRUE)
R> lines(survfit(Surv(death.dur, death) ~ 1, data = tavi),
+ fun = "event", lwd = 2)
R> lines(survfit( Surv(death.dur, death)~1, data=tavi),
+ fun="event", lwd=2, conf.int=TRUE, lty=2)
R> par(new = TRUE)
R> plot(cinc2, states = 4, axes = FALSE, frame = TRUE, col = 3,
+ xlab = "", main = "", ci = TRUE)
R> axis(2); axis(4)
R> axis(1, at = (0:13*90)[0:6*2+1], labels = (0:13*3)[0:6*2+1])
R> legend(200, .8, c("Data",
+ "Simulation: exponential",
+ "Simulation: piecewise exponential"),
+ lty = 1, col = c(1:3), lwd = 2)

Figure 7 shows how the simulated cumulative incidence depends on the statistical model.
The package gems admits the choice of any transition-specific hazard function. We will now
use the second model with piecewise constant hazard functions to estimate the effect of an
intervention on mortality.

4.3. Intervention modeling

Suppose there is a new intervention that dramatically reduces the probability of getting bleed-
ing complications, and we are interested in the impact of this intervention on mortality. For
simplicity, we assume that the intervention reduces the transition-specific hazard of bleeding
complications by 80%. Then

R> hm3 <- hm2
R> par3 <- par2
R> par3[[1, 3]]$rates <- par3[[1, 3]]$rates / 5
R> ds3 <- simulateCohort(transitionFunctions = hm3,
+ parameters = par3,
+ cohortSize = 100 * nrow(tavi),
+ to = maxtime)
R> cinc3 <- cumulativeIncidence(ds3, 0:maxtime, colnames(tmat), M = 100)
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Figure 7: Cumulative incidence with constant and piecewise constant transition-specific haz-
ard functions.
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Figure 8: Effect of reducing bleeding complications on mortality.

R> plot(cinc2, states = 4, axes = FALSE, frame = TRUE, col = 1, ci = TRUE,
+ xlab = "Time (in months)", main = "Mortality")
R> par(new = TRUE)
R> plot(cinc3, states = 4, axes = FALSE, frame = TRUE, col = 2, ci = TRUE,
+ xlab = "", main = "")
R> axis(2); axis(4)
R> axis(1, at = (0:13 * 90)[0:6*2 + 1], labels = (0:13 * 3)[0:6 * 2 + 1])
R> legend(200, .8, c("No intervention", "Intervention"),
+ lty = 1, col = 1:2, lwd = 2)

Figure 8 shows that reducing bleeding complications by 80% decreases three-year mortality
by 18.5% from 43.3% to 35.3%.
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5. Conclusion
In this paper we have presented the R package gems, which allows simulation from a directed
acyclic multistate model. The R package gems is a flexible tool for investigating and evaluating
health interventions. We have given detailed examples of the use of each function of gems,
and an example of its use to evaluate the effect of reduced bleeding complications in TAVI
patients on mortality.
Several packages estimate and simulate Markov models, but we are not aware of any other
packages that allow simulation from a multistate model with arbitrary transition-specific
hazard functions. This flexibility in hazard functions improves its fit to data and allows
to more accurately estimate the effects of different interventions. This package’s inclusion
of history-dependent transitions is also a major improvement on many traditional model
structures.
The gems package has some limitations, including the fact that a DAG is required. Sometimes
it is useful to have models in which patients can return to a previous state. If this feature is not
frequently required, the problem can be resolved by repeating the state in a DAG. Otherwise
a different model structure is needed. A further limitation is that higher flexibility requires
more intensive computation, compared to traditional models. Longitudinal processes could
be incorporated in a joint model, and evaluations of the artificial cohorts could be further
automated in future expansions.
The gems package has useful functions for simulating hypothetical cohorts of patients based
on a multistate model with general transition-specific hazard functions, and is a flexible and
user-friendly tool for planning and evaluating public-health interventions.
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